
Mastering Scene Rearrangement with Expert-Assisted Curriculum
Learning and Adaptive Trade-Off Tree-Search

Zan Wang∗, Hanqing Wang∗, and Wei Liang†

∗ indicates equal contribution † indicates corresponding author

Abstract— Scene Rearrangement Planning (SRP) has recently
emerged as a crucial interior scene task; however, current
approaches still face two primary issues. First, prior works
define the action space of SRP using handcrafted coarse-
grained actions, which are inflexible for scene arrangement
transition and impractical for real-world deployment. Secondly,
the scarcity of realistic indoor scene rearrangement data hin-
ders popular data-hungry learning approaches and quantitative
evaluation. To tackle these issues, we propose a fine-grained
action space definition and curate a large-scale scene rearrange-
ment dataset to facilitate the training of learning approaches
and comprehensive benchmarking. Building upon this dataset,
we introduce a novel framework, PLATO, designed for efficient
agent training and inference. Our approach features an exPert-
assisted curriculum Learning (PL) paradigm that possesses a
Behavior Cloning (BC) and an offline Reinforcement Learning
(RL) curriculum for agent training, along with an advanced
tree-search-based planner enhanced by an Adaptive Trade-Off
(ATO) strategy to improve expert agent performance further.
We demonstrate the superior performance of our method over
baseline agents through extensive experiments and provide a
detailed analysis to elucidate its rationale. Our project website
can be accessed at pl-ato.github.io.

I. INTRODUCTION

Rearrangement involves transforming a physical envi-
ronment to achieve a pre-defined goal state, facilitating
practical applications like table setting [10, 11, 42], object
packing [14, 16], and furniture reconfiguration [36, 38, 39].
To achieve these goals, agents must adeptly analyze spatial
layouts, plan optimal movement trajectories, and skillfully
manipulate objects. Extensive studies have delved into rear-
rangement planning in robotics, e.g., developing robotic arms
to manipulate objects on tabletops through grasping, picking,
and nonprehensile actions [21, 22, 31, 35, 41].

Recently, the emergence of Scene Rearrangement Planning
(SRP) fills the gap between indoor scene synthesis [24, 40,
43] and layout realization, attracting significant attention
from researchers [3, 36, 38, 39]. SRP aims at generating a
feasible movement plan for agents to transition from an
initial scene layout to a target scene layout by moving
furniture. Compared to conventional tabletop rearrangement
tasks [9, 15, 19, 42], SRP presents significantly greater com-
plexity and challenges. First, objects typically have regu-
lar shapes (e.g., cubes and cylinders) in tabletop settings,
whereas furniture objects vary considerably in shape and
size in realistic scenes. Second, obstacles and boundaries

All authors are with the Beijing Institute of Technology, Beijing, China
{wangzan, hanqingwang, liangwei}@bit.edu.cn.

! = 2

! = 2! = 2

! = 0.5

! = 1.1! = 1.5

! = 2.7

Fixed Factor ATO

(b) Fixed Factor vsATO on MCTS

) = 9

) = 7) = 3

) = 11

) = 3) = 9

) = 7

(a) Training Curve

Curriculum 2Curriculum 1

Fig. 1: PL and ATO. (a) PL achieves significant improvement
compared to prior learning paradigms. (b) With the ATO strategy,
tree-search can balance exploitation and exploration by adaptively
assigning C to improve search efficiency.

are usually sparse or absent in tabletop scenarios, while 3D
indoor environments feature irregular layouts, resulting in
obstacles like walls and pillars. Third, the large scale and
intricacy of the scene make the decision sequence much
longer, further increasing the challenge.

Despite the extensive efforts to address SRP, two crit-
ical issues persist. First, prior works shorten the decision
sequence by designing action spaces that align with specific
movement mechanisms [39] or by relying solely on perfect
path planning [36]. However, such limited high-level action
definition may restrict transitions between states that require
low-level actions, potentially leading to unsolvable scenarios.
Second, the quantitative evaluation has been limited to just
a few dozen real scenes [36, 38], which undermines the
statistical robustness of the evaluation.

To address the above issues, we first define a fine-grained
action space to support low-level object manipulation. Ad-
ditionally, we curate a large-scale dataset of 13, 215 diverse
furnished rooms for SRP by utilizing 3D-FRONT [7], facil-
itating the training of data-hungry learning approaches and
comprehensive quantitative evaluation. This new large-scale
dataset poses a more challenging SRP benchmark, charac-
terized by long decision sequences and diverse environment
layouts. To solve the challenging task, we propose a novel
framework, PLATO, which comprises an exPert-assisted
curriculum Learning (PL) paradigm for efficient agent train-
ing and a powerful tree-search-based planner enhanced with
Adaptive Trade-Off (ATO) strategy.

Specifically, our PL paradigm comprises two curriculums:
(i) expert behavior cloning and (ii) offline RL on expert
demonstrations. These two curriculums synergistically ad-
dress each other’s limitations, showcasing superior perfor-
mance compared to prior learning paradigms, as shown in

https://pl-ato.github.io/

Fig. 1 (a). In the first curriculum, the agent learns from
an expert by imitating the expert behavior, which privileges
the agent of fast convergence and mitigates the distributional
shift in offline RL. The second curriculum refines the agent’s
policy towards optimality through the RL objective using
expert demonstrations; these demonstrations potentially mit-
igate issues associated with sparse reward and high training
variance in online RL. Additionally, we develop a strong
tree-search-based planner integrated with a policy network
to address SRP. This planner is further enhanced by an ATO
strategy, which effectively leverages the problem’s intrinsic
properties to balance exploitation and exploration within the
search algorithm. Our results show a significant improvement
in search efficiency, as depicted in Fig. 1 (b).

Our contributions are summarized as follows:
• We propose a more general SRP setting with a flexible

and tractable definition of the action space. Additionally,
we introduce a large-scale indoor scene dataset compris-
ing 13, 215 diverse and realistic furnished room layouts
for benchmarking SRP.

• We introduce a novel curriculum learning paradigm
that efficiently trains agents to solve SRP. Extensive
experiments on our curated dataset demonstrate this
paradigm’s superior performance over baseline agents.

• We develop an advanced search strategy designed to
enhance the efficiency of the tree-search algorithm,
showcase its effectiveness through experimental valida-
tion, and discuss the rationale.

II. RELATED WORK

A. Rearrangement Planning

Given an initial and target configuration of a specified
object set, Rearrangement Planning focuses on generating a
feasible action sequence to transform the initial configuration
into the target. Robotics researchers have explored this topic
for decades, with most efforts concentrated on solving table-
top rearrangement tasks [9–11, 15, 19, 22, 42] using robotic
arms [13, 21]. Wang et al. [36] were the first to formulate
the SRP task, solving it by selecting pre-searched paths
to move objects. Weihs et al [38] train agents to return
objects in a room to their original states after recording
their initial positions; however, the manipulated objects are
typically small and lack mutual obstacles. Building on Wang
et al. [36], our work represents both the initial and target
scene layouts as discrete grids, avoiding the use of goal
images [11]. Additionally, we follow prior work on object
rearrangement [22, 31, 35, 41] by adopting a nonprehensile
action space rather than their coarse-grained action definition
and curate a large-scale scene rearrangement dataset for SRP
agent training and benchmarking.

B. Offline Reinforcement Learning

Reinforcement Learning (RL) provide a mathematical on-
line learning paradigm to extract policies from the interactive
experiences between agents and environments. Nevertheless,
such an “online” feature becomes a prohibitive obstacle to
deploying Deep RL in many scenarios where continuously

collecting experiences with the latest learned policy is in-
efficient and impractical. To address this challenge, utilizing
previously collected offline data to learn policies with RL ob-
jectives [8] has become an appealing approach. Recent works
leverage the power of data-driven methods by adopting off-
policy reinforcement learning techniques for dialogue [17]
and robotic manipulation [6]. Unfortunately, many off-policy
RL algorithms are vulnerable to distributional shift, i.e., the
agent is evaluated on a different distribution because the
behavior of the learned policy leads to unvisited states. A
way to mitigate this issue is to limit the distributional shift
by constraining the region of policy update [27, 29]. Some
works adopt importance sampling to derive an unbiased
estimator of learning objective [18, 33]. Different from those
methods, our approach adopts a curriculum learning [23]
strategy to mitigate distributional shifts. Specifically, we
first train the agent to imitate the action sequences from
the collected demonstrations. Subsequently, we refine the
agent’s policy towards optimality using a RL objective,
utilizing the expert demonstrations as well. This two-stage
training approach is similar to that of Cheng et al. [4], but
we additionally include the imitation learning signal in the
second stage to mitigate distributional shift.

C. Dual Policy Iteration

Dual Policy Iteration (DPI) [32] algorithms like Expert
Iteration (EI) [1] and AlphaZero [30] have shown impressive
performance in solving decision-making problems. This new
class of algorithms maintains two policies: a fast learnable
policy (e.g., a neural network) performs quick rollouts, and a
slow policy (e.g., a tree-search algorithm [20]) searches the
valuable states and plans multiple steps ahead. Those two
policies are combined to provide superior demonstrations
for training the fast policy, while the updated fast policy
in return enhances the performance of the combination.
In Expert Iteration, the strong combined policy provides
demonstrations to supervise the learnable policy through
Imitation Learning (IL). Different from Expert Iteration, our
approach trains the policy through Reinforcement Learning,
which improves the generalizability of the learnable policy
and reduces the learning objective bias caused by mimicking
actions of a sub-optimal expert policy.

III. PRELIMINARIES

A. Markov Decision Proces

Sequential decision-making procedure is often considered
in the Markov Decision Proces (MDP). A discounted infinite-
horizon MDP is defined as a tuple (S,A,P,D,R, γ) [25],
where S is the space of states, A is the space of actions;
P is the transition function: P(s′|s, a) is the probability of
transforming s to s′ by taking action a, s′ is also written as
P(s, a); D is the initial state distribution; R is the reward
function: R(s, a) represents the reward received from the
environment by taking action a at the state s; and γ is
the discount factor. A distribution over the valid actions
a given the state s is called a policy, denoted as π(a|s).
The trajectory is a sequence of states and actions of length

H , denoted as τ = (s0, a0, · · · , sH , aH). Given a MDP
and policy π, the trajectory distribution pπ can be derived
as pπ(s0) = D(s0)

∏H
t=0 π(at|st)P(st+1|st, at). The value

function V π(s) is the expectation of accumulated discounted
reward by following π starting in state s, i.e.,

V π(s) = Eτ∼pπ(s)

[
H∑
t=0

γtR(st, at)

]
. (1)

The optimal policy π∗ ought to maximize this expectation.
Formally, we have π∗ = argmaxπ V

π(s).

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [12, 20] is a useful strat-
egy to address the challenge of selecting/learning policies for
MDP. Each node in the search tree corresponds to a state s.
The root node represents the current state. The edge from s1
to s2 represents the execution of action a by which s1 can
be transformed to s2.

In MCTS, four phases are repeated to grow the search
tree: a) selection, b) expansion, c) rollout, and d) back-
propagation. In the selection phase, a feasible unexpanded
edge in the tree is selected according to a tree policy. The
commonly used tree policy is the Upper Confidence bounds
for Trees (UCT) [2], i.e.,

UCT(s, a) =
r(s, a)

n(s, a)
+ C

√
log n(s)

n(s, a)
, (2)

where r(s, a) is a prior function that gives suggestions on
search. n(s, a) is a counter function that returns the visiting
times of this edge; n(s) is the counter function for the
node corresponding to state s; C is the trade-off parameter
to balance the influence of the terms. After a new node
with state s′ is expanded from the selected edge, in the
rollout phase, a quick simulation under the rollout policy
is performed from the state s′ until a terminal condition
is satisfied. The results of the simulation are used as the
estimate of the node. Finally, the information of nodes is
updated bottom-up through the tree until it reaches the root
node. When the tree is built, a∗ = argmaxa E(sR, a) is the
action selected by MCTS, where sR is the state of the root
node and E(s, a) = R(s, a) + γV (P(s, a)).

IV. PROBLEM DEFINITION

We formulate SRP as an MDP, where the goal is to
transform the current layout of the scene to the target layout.
An RL-based agent can achieve this goal by learning a policy
to make decisions, aiming to maximize the accumulated
discounted reward during the planning.

A. State Representation

The state in SRP is defined by the scene layout, which
includes the shapes, positions, and orientations of the mov-
able objects and the impassable districts, e.g., walls. Fol-
lowing [36], we use the top-down view to characterize the
scene layout, as most movable objects rest on the floor plane.
The objects and impassable districts are projected onto this

floor plane, and the projection is bounded within a square
and discretized into a N × N grid. Suppose a scene has
K objects; we use a binary tensor l, l ∈ {0, 1}N×N×(K+1)

to represent the scene layout. The first two dimensions
of the matrix l are the spatial dimensions, and the third
dimension is the object dimension. For the kth object, an
entry li,j,k stores whether the location (i, j) is occupied by
the object k. The third dimension’s last channel indicates
the occupancy of impassable districts. The state st at time
step t is the concatenation of the current scene layout lt and
the target scene layout lT along the third dimension1, i.e.,
st ∈ {0, 1}N×N×(2K+1).

B. Action Space

The action for SRP is defined as a pair (o, p), where
o ∈ O represents an object and p ∈ P denotes the possible
actions that can manipulate the object. In robotics, more
atomic action spaces are preferred due to their tractability
(e.g., nonprehensile actions), making them more practical
for real-world deployment. In line with this, we define six
simple nonprehensile actions to transform the positions and
orientations of the objects. Objects can move on cell forward
or backward along up, down, left or right direction and
rotate clockwise or anti-clockwise by 15 degrees (i.e., 24
discrete orientations). This setup is reasonable for smart
home scenarios, where furniture with mobile bases can act
as intelligent agents rather than relying on external robots
for object movement.

C. Reward Shaping

When an action is executed, the environment returns a
reward value immediately. Drawn inspiration from Wang et
al. [36], our reward shaping consisting four kinds of reward
terms. Distance reflects the change in distance after an action,
which accounts for both the Manhattan distance between the
current and target coordinates and the discretized distance
between the orientation states. Arrival returns a reward of 4
if the current object arrives at its target state after an action.
Conversely, Leave returns −4 if the current object leaves
its target state after an action. Success offers a significant
positive reward of 50 if all objects reach their target states.

V. METHOD

To solve the challenging problem, we propose a novel
exPert-assisted curriculum Learning (PL) paradigm trained
on demonstrations collected by an expert and an Adaptive
Trade-Off (ATO) strategy to improve the tree-search algo-
rithm. Together, they constitute a powerful agent for SRP.

A. Expert Demonstration

To perform the learning of the two curriculums paradigm,
we first collect a set of trajectory T through an expert agent.
A trajectory τ ∈ T in the dataset is defined as

τ = (s0, a0, v0, r0(·), s′0(·), · · · , sH , aH , vH , rH(·), s′H(·)),

1lt and lT share the same impassable district channel.

where at is the expert action at time step t, vt is the estimate
value of st by the expert. rt(a) is the reward function that
returns the reward given st and an arbitrary action a. s′t(a)
is the transition function that returns the next state given
st and an arbitrary action a. In our problem, rt(·) and
s′t(·) can be stored in lookup tables since our action space
is discrete, and the environment model is available during
data collection. They can also be estimated through function
approximation [37] and predictive models [6].

The expert we use to collect data is a canonical MCTS
algorithm, which predicts both the action and the value when
given a state. Note that MCTS is a model-based search
algorithm that needs to know the explicit transitions between
states. When the model is unavailable, the expert action can
be obtained through manual annotation, and the accumulated
reward along the trajectory can estimate the value.

B. Expert Behavior Cloning

In the first curriculum, the agent is taught to learn from
the expert. The learning objective is twofold: 1) imitate the
expert action, and 2) learn to predict the expert value. To this
end, we adopt an actor network πθ and a value network vϕ
parameterized by θ and ϕ, respectively, and train them under
expert supervision. Concretely, we use the cross-entropy loss
for learning of the actor,

LIL
p = −

∑
τ∈T

H∑
t=0

log πθ(at|st). (3)

The learning of the value network is a regression problem
where we adopt the Mean-Square-Error (MSE) as the loss
function, derived as

LIL
v =

∑
τ∈T

H∑
t=0

(vϕ(st)− vt)
2. (4)

The learning goal of imitating expert action is to approx-
imate the distribution of action sequences in the demonstra-
tion dataset given the observed state sequence. According to
behavior cloning error bound [26], the expected error of the
learned policy in inference is bounded by C +H2ϵ, where
C is the error of expert policy, H is the sequence length,
and ϵ is the generalization error of the learned policy on
the training set. In other words, behavior cloning constrains
the distribution shift between the training sequences and
sequences inferred by the learned policy.

C. Offline Reinforcement Learning on Expert Demonstration

In contrast to simply imitating expert actions in behavior
cloning, the learning objective of RL is finding the best
policy to maximize the accumulated discounted reward.
Nevertheless, ordinary online RL algorithms often suffer
from slow convergence, high variance, and local minima
for multiple reasons, one of which is that the agent often
explores the sparse-reward regions of the state space. To
mitigate those defects, we incorporate the expert demon-
stration into the RL procedure. The expert demonstration
privileges the agent to experience more non-trivial states

compared to the data collected through ϵ-greedy strategy by
a weak policy, i.e., it illustrates high-reward regions of the
state space, which significantly accelerates the convergence.
Additionally, these expert demonstrations typically exhibit
lower variance, leading to more stable training.

The learning of the policy network is similar to Off-Policy
Actor-Critic (Off-PAC) [5], an off-policy RL algorithm. In
this way, the loss of the policy network is

LRL
p = −

T∑
τ

H∑
t=0

Ea∼πθ(·|st) [A(st, a) log(πθ(a|st))] , (5)

where A(st, a) is the advantage defined as A(st, a) =
rt(a) + γvϕ(s

′
t(a))− vϕ(st).

Conventional AC algorithm updates the critic in a
Temporal-Difference (TD) manner. Nevertheless, in the of-
fline setting, TD makes the critic especially prone to suffer
from deadly triad [34] due to the out-of-distribution (OOD)
issue. Therefore, we use the weights pre-trained in behavior
cloning and fix them in offline RL training. The critic is
regarded as a baseline function to reduce the variance during
training. Since offline RL training of the policy network may
increase the defect of distributional shift, we also add the
behavior cloning signal in the second curriculum to constrain
the update of the actor.

D. Adaptive Trade-Off Strategy
Due to the vast action space and the exponential growth of

search complexity, the spread and depth of the search tree are
highly constrained in limited search times, which can make a
general MCTS algorithm inefficient. To tackle this problem,
we utilize the intrinsic character of our task and propose an
ATO strategy and significantly improve the search efficiency.

For SRP, it is intuitive that multiple optimal actions are
feasible in some states while few optimal actions exist
in others. For example, considering a scene where most
objects need to be moved, even an optimal policy may
choose any one of the objects to move toward its target
configuration. Conversely, in a scene with only one object
requiring movement, the optimal policy would take the only
available optimal action. In other words, the entropy of
action probability distribution from an optimal policy varies
violently across different states. This character reveals that an
ideal balance between exploitation and exploration for a tree-
search algorithm is dependent on the state, i.e., the search
should exploit more in the states with many optimal actions
and explore more in the states with few optimal actions. In
MCTS, the trade-off between exploitation and exploration is
controlled by a hyperparameter C according to the Upper
Confidence bounds for Trees (UCT) [2]. As C increases,
MCTS tends to explore (spread) rather than exploit (depth).
As the above observation suggests, C can be formalized as
a function C(s) depending on the state s,

C(s) = β − λ
|{a|π∗(a|s) > ξ}|

|A|
, (6)

where λ is a scaling coefficient, β is a bias coefficient, and
ξ is the threshold that filters the optimal actions. Eq. (6)

illustrates that C is proportional to the number of optimal
actions. However, calculating C(s) is intractable since π∗ is
unavailable, and ξ needs to be tuned. Instead, we introduce
a coarse upper bound d(s, sT) that holds in most states.
d(s, sT) is the element-wise difference of position and ori-
entation between the current state s and the target state sT .
In this way, the trade-off Ĉ(s) can be derived as:

Ĉ(s) = β − λ
d(s, sT)

|A|
. (7)

The ATO strategy can be directly applied in the inference
phase of MCTS.

E. Integration of Policy Network and MCTS

Combining neural networks with search algorithms has
achieved great success in many tasks. To further enhance
the performance in SRP, we integrate our trained policy
networks with the MCTS algorithm. Specifically, during the
selection phase of MCTS, we use the actor of the policy,
πθ(at|st), as the prior function r(s, a) to guide the search.
In the rollout phase, conducting a quick simulation to reach
a terminal state is intractable for complex tasks like SRP.
Therefore, we perform a fixed-step simulation and use the
critic network to estimate the value of the final state for back-
propagation usage. Such a tree-search planner integrated
with a pre-trained policy network possesses improved search
efficiency and efficacy.

F. Implementation

Network Architecture We modify the network architecture
from [36] to build the actor, which is a CNN encoder
appended with an LSTM layer. The hidden state size of the
LSTM layer is 512. The critic shares the same CNN encoder
with the actor and has an individual FC layer. The input of
the two networks is the current state s. The output of the actor
is a 120-d tensor, which represents the predicted probability
of actions. It works for at most 20 objects in a scene. The
output of the critic is a scalar, which refers to the estimated
value of the current state.
Reproducibility Our network is implemented in PyTorch.
The batch size is 8. The number of the data processes is
4. The rounds of tree-search for each decision-making is
50. In the test phase, an episode is regarded as failed if
it is not finished within 200 steps. The optimizer used in
the network training is ADAM. The learning rate is set to
10−4. The trade-off factor C for canonical MCTS is 2.0.
The utilities, including the virtual environment and the tree-
search algorithm, are implemented in C++. The full model is
trained on 4 NVIDIA RTX 3090 GPUs with 24GB memory
in each card. The PL algorithm is illustrated in Alg. 1.

VI. EXPERIMENTS

A. Dataset

We demonstrate our approach on 3D-FRONT [7], a
large-scale indoor scene dataset, where the room’s layout
is professionally designed and populated with high-quality

Algorithm 1: Training of PL
1: Initialize θ0 for actor;
2: Initialize ϕ0 for critic;
3: Collect a set of trajectory T = {τ} through an expert;
// Curriculum 1

4: for iteration k ∈ [0, · · · ,K − 1] do
5: sample a batch of trajectory B from T = {τ};
6: compute loss LIL

p (B, θk) according to Eq. (3);
7: compute loss LIL

v (B, ϕk) according to Eq. (4);
8: θk+1 ← θk − αp∇θkL

IL
p ;

9: ϕk+1 ← ϕk − αv∇ϕkL
IL
v ;

10: end for
// Curriculum 2

11: for iteration l ∈ [0, · · · , L− 1] do
12: sample a batch of trajectory B from T = {τ};
13: compute loss LIL

p (B, θK+l) according to Eq. (3);
14: compute loss LRL

p (B, θK+l) according to Eq. (5);
15: compute loss LIL

v (B, ϕK+l) according to Eq. (4);
16: θK+l+1 ← θk − αp,IL∇θK+lL

IL
p − αp,RL∇θkL

RL
p ;

17: ϕK+l+1 ← ϕk − αv∇ϕK+lL
IL
v ;

18: end for

3D models. The interior designs of the rooms are trans-
ferred from expert creations. This dataset contains 6, 813
distinct houses and 19, 062 furnished rooms, supporting
indoor scene tasks like 3D scene understanding, indoor scene
synthesis, semantic segmentation, etc. The diverse furnished
rooms and the abundant labels satisfy the demand of the
SRP task. In SRP, the complexity of planning depends
heavily on object number and object shape in the scene
since more objects and shapes constrain the solution space.

Object Number

C
as

es

Fig. 2: Dataset distribution.

We filter the dataset and
exclude the scenes with
less than 4 objects (46.1%)
and more than 15 objects
(1.1%), removing the triv-
ial cases and reducing the
dataset’s bias. It finally re-
sults in 13, 215 rooms in
total. Fig. 2 shows the
statistic of object number
in these rooms. We ran-
domly divide the dataset into three splits, Train (11899
cases, 90%), Validation Unseen (259 cases, 2%) and
Test (1057 cases, 8%). We sample 1000 cases from Train
split to form Validation Seen set.

We use the human-designed layout as the target layout
and sample a feasible layout with the same objects as the
initial layout. To ensure that the initial and target layouts
can transform from each other, we sample the initial layout
by rounds of random walks starting from the target. In each
round, we randomly select an object to perform a random
feasible move. Each initial layout is generated by performing
150 rounds of moves using a greedy strategy, making the
objects as far as possible from their original positions and
poses. We extract the layouts’ configurations through the
following steps: (i) bounding the view of the scene to the
center of a square; (ii) rendering the objects individually; (iii)

TABLE I: The performance of different agents. SR is the primary metric. The number in bold is the best in comparison.

Agent Validation Seen Validation Unseen Test
SR↑ Length↓ DR↑ TR↑ Runtime↓ SR↑ Length↓ DR↑ TR↑ Runtime↓ SR↑ Length↓ DR↑ TR↑ Runtime↓

Model-Free

Random 0 200.0 3.54 4.36 0.09s 0 200.0 3.24 3.44 0.09s 0 200.0 3.49 3.90 0.09s
Off-PAC 0.080 192.3 17.63 65.23 0.25s 0.098 191.6 17.60 70.36 0.25s 0.078 193.9 17.52 65.70 0.25s

PPO 0.306 165.6 19.54 80.28 0.33s 0.314 166.3 19.48 83.28 0.33s 0.307 164.8 19.48 79.58 0.33s
EI 0.236 178.1 14.37 62.87 0.24s 0.206 182.5 13.40 59.80 0.24s 0.187 181.7 13.25 55.97 0.25s

PL (Ours) 0.365 156.8 18.81 99.96 0.21s 0.401 158.3 18.79 102.70 0.22s 0.386 156.5 18.90 99.47 0.20s

Model-Based

Greedy 0.470 152.0 21.56 54.07 1.18s 0.470 155.3 21.53 53.19 1.19s 0.472 150.5 21.68 53.37 1.15s
A* 0.640 131.3 22.58 139.66 178.94s 0.640 131.2 22.23 138.60 162.6s 0.600 140.2 21.25 142.50 169.27s

MCTS 0.540 152.2 21.14 100.33 71.78s 0.497 158.6 21.29 101.03 47.90s 0.502 153.8 21.34 96.91 38.43s
PPO + TS 0.582 138.0 21.16 103.90 16.08s 0.574 139.2 21.08 104.85 16.55s 0.576 137.8 20.89 104.40 16.86s

PLATO (Ours) 0.747 128.1 22.24 125.37 16.22s 0.768 129.7 22.00 133.18 17.74s 0.731 129.8 21.60 125.60 16.55s

discretizing the top-down silhouettes to extract the shape and
position of each object. We adopt the same process to extract
the information of impassable districts. The discretization
resolution is 64× 64.

B. Quantitative Results

Metrics To evaluate the performance of the agent, we define
five metrics, i.e., Success Rate (SR) ↑, Length ↓, Discounted
Reward (DR) ↑, Total Reward (TR) ↑, and Runtime ↓. Up
arrow ↑ indicates higher value is better; ↓ is similar. SR
is the rate of attaining the target layout. It illustrates the
agent’s general ability to finish the task and is the primary
metric in our experiment. Length refers to the average
length of the action sequence. It reflects the efficiency of
the action sequence. For the failed cases, the length of the
action sequence is the maximum allowed action step (200 in
evaluation). DR and TR reveal the agent’s soft short-term and
long-term performance, respectively. Runtime is the average
time consumed in each case. It measures the algorithm’s
running efficiency.
Baseline Agents To have an intuitive understanding of the
complexity of SRP and provide a comparison with our
approach, we introduce several strong learning-based, rule-
based, and search methods as baseline agents:

• Random: The agent that follows the random walk policy,
where the action is randomly sampled at each step.

• Greedy: The agent takes action with the maximum
instant reward at each step.

• A*: The agent performing the A* algorithm to search
the action. We use the distance between the current state
and the target state as the heuristic estimate. See the
definition of distance between states in reward shaping.

• MCTS: The agent that performs the canonical Monte
Carlo Tree Search algorithm [2] to search the action.

• Off-PAC: The agent trained with Off-Policy Actor-Critic
algorithm [5]. ϵ-greedy strategy is adopted.

• PPO: The agent trained with the Proximal Policy Op-
timization (PPO) algorithm [28].

• EI: A policy trained with Expert Iteration (EI) [1].
Note that Greedy, A*, and MCTS are model-based agents

that rely on simulation, while the learning-based agents are
model-free in inference. For a fair comparison, the networks
used in our approach, Off-PAC, PPO, and EI, share the
same architecture. The trained network integrated with a tree-
search algorithm can build a stronger model-based agent. We
take PPO as an example, which is denoted as PPO + TS.

‡

‡

Fig. 3: The training curve of different agents. Note that BC and
PL share the same training process before the dashed line. Notation
‡ denotes that the training is offline.

Comparison The performance of the agents on
Validation Seen, Validation Unseen and Test
sets are shown in Tab. I. The weights of the learnable agents
are selected via SR metric on Validation Unseen set.
The first five rows are model-free agents. The result shows
that the Random agent gets 0 SR on all splits, which means
that SRP is not trivial. Our approach achieves better SR,
Length, and TR than the Off-PAC, PPO, and EI methods
across all splits. The following five rows are model-based
agents. We can observe that the agent built by our approach
also achieves the best performance on SR. It is worth noting
that model-free agents require less runtime compared to
model-based agents because they do not rely on simulation.

To analyze the training characteristics of the agents, we
plot the curve of SR during training. As shown in Fig. 3,
the x-axis represents the number of episodes the agent
experienced, and the y-axis indicates the SR metric. The
curve shows that our approach converges rapidly in the first
curriculum and gradually reaches a plateau. In the second
curriculum, the agent soon transcends this plateau, which
indicates that the learning objective of RL effectively updates
the policy network toward a better policy.

C. Diagnostic Experiment and Analysis

Problem Complexity The complexity of planning is par-
tially influenced by the number of objects. To further study
the performance of the learnable agents under different levels
of problem difficulty, we divide the cases in Test set into

TABLE II: The performance on different object number splits.

Agent 4-7 objects 8-11 objects 12-15 objects
SR↑ Length↓ DR↑ TR↑ Runtime↓ SR↑ Length↓ DR↑ TR↑ Runtime↓ SR↑ Length↓ DR↑ TR↑ Runtime↓

Off-PAC 0.117 190.9 18.01 68.88 0.25s 0 200.0 17.94 73.36 0.25s 0 200.0 14.63 40.18 0.25s
PPO 0.456 147.6 20.11 84.26 0.33s 0.002 199.9 18.97 79.50 0.33s 0 200.0 17.16 57.16 0.33s
EI 0.278 172.8 15.68 70.82 0.24s 0 200.0 9.68 35.24 0.24s 0 200.0 6.32 12.39 0.24s
PL 0.573 135.3 20.72 111.72 0.20s 0.005 199.7 15.94 84.91 0.20s 0 200.0 14.09 60.13 0.20s

TABLE III: Ablation study. Notation ‡ denotes that the training is
offline. Notation † indicates that ATO is adopted in tree-search.

Agent Test
SR↑ Length↓ DR↑ TR↑ Runtime↓

BC‡ 0.361 159.9 18.73 98.53 0.22s
Off-PAC‡ 0 200.0 3.80 -3.47 0.29s

PL‡ 0.386 156.5 18.90 99.47 0.20s
MCTS 0.502 153.8 21.34 96.91 38.43s
MCTS† 0.513 153.8 21.26 101.11 59.67s

PPO + TS 0.576 137.8 20.89 104.40 16.86s
PPO + TS† 0.601 138.1 20.50 110.00 20.73s

PL + TS (C = 0.05) 0.716 132.0 21.57 120.94 21.05s
PL + TS (C = 0.10) 0.726 131.7 21.65 125.60 14.21s
PL + TS (C = 0.15) 0.688 133.8 21.57 120.86 13.91s
PL + TS† (PLATO) 0.731 129.8 21.60 125.60 16.55s

three splits according to the object number in each room. In
our dataset, object numbers in a room range from 4 to 15;
the first split contains cases with 4-7 objects, the second
split has cases with 8-11 objects, and the third split has
cases of 12-15 objects.

The comparison of different agents with respect to the ob-
ject number is presented in Tab. II. We observe a significant
drop in SR as the object number increases. In particular, the
learnable agents achieve nearly 0 SR with 8-11 objects and
12-15 objects. It is important to note that each test case has
an optimal solution within 150 steps, which the initial layout
generation process guarantees. The evaluation results support
our hypothesis that scenarios with more objects impose more
constraints, making the problem more challenging. Such a
poor performance on the two splits also highlights that this
problem is far from being fully solved.
Curriculums We study the effects of two curriculums by
training agents with only Behavior Cloning (BC) and Off-
PAC, respectively. As shown in Tab. III, omitting either
curriculum leads to a performance drop. When trained solely
with Off-PAC, the agent’s performance significantly worsens
due to the distributional shift. Fig. 3 further highlights the
importance of both curriculums. Interestingly, we observe
that the agent trained with EI converges rather slowly com-
pared to BC. This can be attributed to the iterative updates of
the expert policy in EI, where the agent attempts to imitate
actions from different policies, causing inconsistent learning
objectives and a drop in performance.
Generalizability of ATO We also study the effectiveness of
ATO on different search agents. As shown in Tab. III, ATO
consistently boosts the performance of agents consisting of
a network policy and a tree-search planner. Recall that ATO
controls the balance between exploitation and exploration.
Notably, in comparison to the agents PL + TS with different
fixed trade-off factor C, the agent with our ATO strategy out-
performs all other agents without hyperparameters searching.

0

150

75

Normalized Trajectory Length

En
tr

op
y

Fig. 4: Frequency map of action entropy over 259 episodes.

Rationality of ATO To further reveal the rationality of ATO,
we visualize the statistics of action entropy throughout the
episodes. Here, we use MCTS to approximate the optimal
policy2 and record the action entropy along the inferred
trajectories on Validation Unseen set. The action prob-
ability is derived by computing softmax over E(sR, a). As
illustrated in Fig. 4, at the beginning of an episode, the
action entropy of the optimal policy is high, indicating that
several actions are feasible. As the episode proceeds, the
entropy gradually decreases, reflecting that fewer actions
remain optimal. It suggests that the search can rely more
on the predicted prior from the network policy (exploitation)
when the state has many feasible actions to move, as it has a
higher probability of choosing a feasible action. Conversely,
the search should try more possibilities (exploration) when
the state has few feasible actions. This is exactly the core
idea of the proposed ATO strategy.

VII. CONCLUSION AND FUTURE WORK

This paper focuses on the SRP task: introducing a more
flexible definition of atomic action space, curating a large-
scale dataset for benchmarking, and proposing a novel model
named PLATO to address this challenge. PLATO features
a curriculum learning paradigm for efficient agent training
and a strategy that enhances the efficiency and efficacy of
tree-search-based planners. Extensive results and analysis
demonstrate the superiority of the proposed methods over
various baselines. Additionally, results across different diffi-
culty levels on the test set indicate that the problem remains
unsolved as scene layout complexity increases.

Future work should consider the 3D geometry of objects
and the involvement of robots for object manipulation in
3D space, making the approach more suitable for real-world
deployment. Furthermore, exploring multi-agent cooperation
in SRP task is essential, especially when it requires the
manipulation of large and heavy objects.
Acknowledgement This work is supported by the National
Natural Science Foundation of China (NSFC) (62172043).

2MCTS is a sound choice because its policy converges toward the optimal
policy as the number of search rounds increases.

REFERENCES

[1] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with
deep learning and tree search,” in Advances in Neural Information
Processing Systems (NeurIPS), 2017. 2, 6

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235–256,
2002. 3, 4, 6

[3] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, et al., “Rearrangement:
A challenge for embodied ai,” arXiv preprint arXiv:2011.01975, 2020.
1

[4] C.-A. Cheng, X. Yan, N. Wagener, and B. Boots, “Fast pol-
icy learning through imitation and reinforcement,” arXiv preprint
arXiv:1805.10413, 2018. 2

[5] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in
International Conference on Machine Learning (ICML), 2012. 4, 6

[6] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” arXiv preprint arXiv:1812.00568, 2018. 2, 4

[7] H. Fu, B. Cai, L. Gao, L.-X. Zhang, J. Wang, C. Li, Q. Zeng, C. Sun,
R. Jia, B. Zhao, et al., “3d-front: 3d furnished rooms with layouts and
semantics,” in International Conference on Computer Vision (ICCV),
2021. 1, 5

[8] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” arXiv preprint
arXiv:2004.07219, 2020. 2

[9] K. Gao, D. Lau, B. Huang, K. E. Bekris, and J. Yu, “Fast high-quality
tabletop rearrangement in bounded workspace,” in International Con-
ference on Robotics and Automation (ICRA), 2022. 1, 2

[10] K. Gao, J. Yu, T. S. Punjabi, and J. Yu, “Effectively rearranging hetero-
geneous objects on cluttered tabletops,” in International Conference
on Intelligent Robots and Systems (IROS), 2023. 1, 2

[11] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng,
and D. Fox, “Ifor: Iterative flow minimization for robotic object
rearrangement,” in Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022. 1, 2

[12] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning
for real-time atari game play using offline monte-carlo tree search
planning,” in Advances in Neural Information Processing Systems
(NeurIPS), 2014. 3

[13] J. A. Haustein, I. Arnekvist, J. Stork, K. Hang, and D. Kragic,
“Learning manipulation states and actions for efficient non-prehensile
rearrangement planning,” arXiv preprint arXiv:1901.03557, 2019. 2

[14] R. Hu, J. Xu, B. Chen, M. Gong, H. Zhang, and H. Huang, “Tap-net:
transport-and-pack using reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020. 1

[15] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight trees
for object retrieval from clutter with nonprehensile rearrangement,”
IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1, pp. 231–
238, 2021. 1, 2

[16] S. Huang, Z. Wang, J. Zhou, and J. Lu, “Planning irregular object
packing via hierarchical reinforcement learning,” IEEE Robotics and
Automation Letters (RA-L), vol. 8, no. 1, pp. 81–88, 2022. 1

[17] N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, A. Lapedriza,
N. Jones, S. Gu, and R. Picard, “Way off-policy batch deep reinforce-
ment learning of implicit human preferences in dialog,” arXiv preprint
arXiv:1907.00456, 2019. 2

[18] N. Jiang and L. Li, “Doubly robust off-policy value evaluation for
reinforcement learning,” in International Conference on Machine
Learning (ICML), 2016. 2

[19] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in International
Conference on Robotics and Automation (ICRA), 2016. 1, 2

[20] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European Conference on Machine Learning (ECML), 2006. 2, 3

[21] M. C. Koval, J. E. King, N. S. Pollard, and S. S. Srinivasa, “Robust
trajectory selection for rearrangement planning as a multi-armed
bandit problem,” in International Conference on Intelligent Robots
and Systems (IROS), 2015. 1, 2

[22] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, no. 2, pp. 3715–3722, 2020. 1, 2

[23] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and
P. Stone, “Curriculum learning for reinforcement learning domains:
A framework and survey,” Journal of Machine Learning Research,
vol. 21, no. 181, pp. 1–50, 2020. 2

[24] D. Paschalidou, A. Kar, M. Shugrina, K. Kreis, A. Geiger, and S. Fi-
dler, “Atiss: Autoregressive transformers for indoor scene synthesis,” in
Advances in Neural Information Processing Systems (NeurIPS), 2021.
1

[25] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014. 2

[26] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International
Conference on Artificial Intelligence and Statistics (ICAIS), 2011. 4

[27] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), 2015. 2

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017. 6

[29] K. Sham and L. John, “Approximately optimal approximate reinforce-
ment learning,” in International Conference on Machine Learning
(ICML), 2002. 2

[30] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017. 2

[31] C. Song and A. Boularias, “Object rearrangement with nested nonpre-
hensile manipulation actions,” in International Conference on Intelli-
gent Robots and Systems (IROS), 2019. 1, 2

[32] W. Sun, G. J. Gordon, B. Boots, and J. Bagnell, “Dual policy iteration,”
in Advances in Neural Information Processing Systems (NeurIPS),
2018. 2

[33] P. Thomas and E. Brunskill, “Data-efficient off-policy policy eval-
uation for reinforcement learning,” in International Conference on
Machine Learning (ICML), 2016. 2

[34] H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and
J. Modayil, “Deep reinforcement learning and the deadly triad,” arXiv
preprint arXiv:1812.02648, 2018. 4

[35] E. R. Vieira, D. Nakhimovich, K. Gao, R. Wang, J. Yu, and K. E.
Bekris, “Persistent homology for effective non-prehensile manipu-
lation,” in International Conference on Robotics and Automation
(ICRA), 2022. 1, 2

[36] H. Wang, W. Liang, and L.-F. Yu, “Scene mover: Automatic move
planning for scene arrangement by deep reinforcement learning,” ACM
Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020. 1,
2, 3, 5

[37] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
Conference on Computer Vision and Pattern Recognition (CVPR),
2019. 4

[38] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, “Visual room
rearrangement,” in Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 1, 2

[39] G. Xiong, Q. Fu, H. Fu, B. Zhou, G. Luo, and Z. Deng, “Motion plan-
ning for convertible indoor scene layout design,” IEEE Transactions
on Visualization and Computer Graph (TVCG), vol. 27, no. 12, pp.
4413–4424, 2020. 1

[40] L. F. Yu, S. K. Yeung, C. K. Tang, D. Terzopoulos, T. F. Chan,
and S. J. Osher, “Make it home: automatic optimization of furniture
arrangement,” ACM Transactions on Graphics (TOG), vol. 30, no. 4,
2011. 1

[41] W. Yuan, K. Hang, D. Kragic, M. Y. Wang, and J. A. Stork, “End-
to-end nonprehensile rearrangement with deep reinforcement learning
and simulation-to-reality transfer,” Robotics and Autonomous Systems,
vol. 119, pp. 119–134, 2019. 1, 2

[42] G. Zhai, X. Cai, D. Huang, Y. Di, F. Manhardt, F. Tombari, N. Navab,
and B. Busam, “Sg-bot: Object rearrangement via coarse-to-fine
robotic imagination on scene graphs,” in International Conference on
Robotics and Automation (ICRA), 2024. 1, 2

[43] Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang,
“Deep generative modeling for scene synthesis via hybrid represen-
tations,” ACM Transactions on Graphics (TOG), vol. 39, no. 2, pp.
1–21, 2020. 1

	Introduction
	Related Work
	Rearrangement Planning
	Offline Reinforcement Learning
	Dual Policy Iteration

	Preliminaries
	Markov Decision Proces
	Monte Carlo Tree Search

	Problem Definition
	State Representation
	Action Space
	Reward Shaping

	Method
	Expert Demonstration
	Expert Behavior Cloning
	Offline Reinforcement Learning on Expert Demonstration
	Adaptive Trade-Off Strategy
	Integration of Policy Network and MCTS
	Implementation

	Experiments
	Dataset
	Quantitative Results
	Diagnostic Experiment and Analysis

	Conclusion and Future Work
	References

